Printed Page:-

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

Roll. No:

Subject Code:- AAS0101A

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: I - THEORY EXAMINATION (2022 - 2023)

Subject: Engineering Physics

Time: 3 Hours

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A**, **B**, **& C**. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. The time of observation of a pulse of light in a frame of reference moving with 1 velocity v is (CO1)
 - (a) $1/(1-v^2/c^2)$ (b) $1/\sqrt{(1-v^2/c^2)}$ (c) $(1-v^2/c^2)$ (d) $\sqrt{(1-v^2/c^2)}$
- 1-b. Michelson Morley experiment is based on the phenomenon (CO1)
 - (a) Interference
 - (b) Diffraction
 - (c) Polarization
 - (d) Dispersion
- 1-c. Light has (CO2)
 - (a) Wave nature
 - (b) Particle nature

20

Max. Marks: 100

1

1

(c) Both of these nature

(d) None of these

1-d. Which of the following is the correct relation between the group velocity and 1 the phase velocity? (CO2)

1

1

1

1

1

(a) $v_g = v_p + \frac{\lambda dv_p}{d\lambda}$ (b) $v_p = v_g + \frac{\lambda^2 dv_p}{d\lambda}$ (c) $v_p = v_g - \frac{\lambda dv_p}{d\lambda}$ (d) $v_g = v_p - \frac{\lambda dv_p}{d\lambda}$

1-e. The diffraction Phenomenon is (CO3)

(a) Bending of light around an obstacle

- (b) Rectilinear propagation of light
- (c) Oscillation of light wave in one direction
- (d) None of above
- 1-f. Which of the following sources gives best monochromatic light (CO3)
 - (a) A candle
 - (b) A bulb
 - (c) Mercury Lamp
 - (d) laser Source
- 1-g. Fermi-Dirac statistics is for the..... (CO 4)
 - (a) Distinguishable particle
 - (b) Symmetrical Particles
 - (c) Particles with half integral spin
 - (d) Particles with integral spin
- 1-h. A semiconductor has temperature coefficient of resistance (CO 4)
 - (a) Positive
 - (b) Negative
 - (c) Zero
 - (d) None of these
- 1-i. Ruby LASER produces the Laser beam of Wavelength (CO5)
 - (a) 6943Å

- (b) 6328 Å
- (c) 6320 Å
- (d) 6940 Å
- 1-j. The reduction in amplitude and intensity of a signal as it guided through an 1 optical fiber is called (CO 5)
 - (a) Dispersion
 - (b) Attenuatio
 - (c) Diffusion
 - (d) None of above

2. Attempt all parts:-

3. Answer any <u>five</u> of the following:-		
	SECTION B	30
2.e.	Write the Components of Laser devices. (CO5)	2
2.d.	What are extrinsic semiconductors? (CO4)	2
2.c.	What are missing orders? (CO3)	2
2.b.	What are matter waves? (CO2)	2
2.a.	Explain the concept of length contraction. (CO1)	2

- 3-a. Find the velocity of a particle if its kinetic energy is three times of its rest mass 6 energy. (CO1)
- 3-b. Show that the circle $x^2 + y^2 = a^2$ in frame S appears to be an ellipse in frame S' 6 which is moving with velocity 'v' relative to S. (CO 1)
- 3-c. Calculate the smallest possible uncertainty in the position of an electron 6 moving with velocity 3×10⁷m/s. (C02)
- 3-d. Find the energy of lowest energy level and momentum of electron in one 6 dimensional potential box of width 10 Å. (CO2)
- 3.e. A soap film of refractive index 1.43 is illuminated by white light incident at an 6 angle of 30. The refracted light is examined by a spectroscope in which dark band corresponding to the wavelength 6000 Angstrom is observed. Calculate the thickness of the film. (CO3)
- 3.f. A 20-metre length of cable has a cross-sectional area of 1mm² and a resistance 6 of 5 ohms. Calculate the conductivity of the cable. (CO4)
- 3.g. Calculate a fractional difference between core and cladding surface refractive 6 indices for a step index fiber having core and cladding refractive indices 1.65 and 1.45 respectively. (CO 5)

SECTION C

4. Answer any one of the following:-

- 4-a. State Einstein's postulates of special theory of relativity. Derive the Lorentz 10 transformation equations. (CO1)
- 4-b. Derive the expression for relativistic velocity addition theorem. Show that the 10 addition of velocity of light to the velocity of light merely reproduces the velocity of light. (CO1)

5. Answer any one of the following:-

- 5-a. Define the wave function and give its physical significance. Also, Derive the 10 time independent Schrodinger wave equations. (CO2)
- 5-b. Derive an expression for phase and group velocity Also, Prove that phase 10 velocity is greater than the velocity of light. (CO2)

6. Answer any one of the following:-

- 6-a. Explain the differnce between Fresnel and Fraunhoffer diffraction. Obtain the 10 intensities of diffraction pattern in Fraunhoffer diffraction due to single slit. (CO3)
- 6-b. Describe and explain the formation of Newton's rings in reflected 10 monochromatic light. Obtain the conditions for bright and dark fringe. (CO3)

7. Answer any one of the following:-

- 7-a. Obtain an expression for the electrical conductivity of an intrinsic and extrinsic 10 semiconductors. (CO4)
- 7-b. What is Photovoltaic effect ? Discuss the construction and working of 10 Photovoltaic cell with neat diagram. (CO4)

8. Answer any one of the following:-

- 8-a. What do you understand by attenuation in optical fiber? Discuss the important 10 factors responsible for the loss of power in optical fiber. (CO5)
- 8-b. Describe the Energy level diagram to explain the working of He-Ne Laser. (CO5) 10