Printed Page:-

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

Roll. No:

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: I - THEORY EXAMINATION (2022 - 2023)

Subject: Physics for Computing Science

Time: 2 Hours

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice *Questions (MCQ's) & Subjective type questions.*

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1. Attempt all parts:-

- Energy of SHM always..... (CO1) 1-a.
 - (a) 0
 - (b) Decreases
 - (c) remain conserved
 - (d) increases
- 1-b. Center of Newton's ring in reflected region is dark because at center path 1 difference is (CO2)
 - (a) λ/2
 - (b) 2λ/2
 - (c) 3λ/2
 - (d) none
- Freely moving particle inside the 1-d box has (CO3) 1-c.
 - (a) only kinetic energy
 - (b) potential energy

SECTION A

1

1

15

Max. Marks: 50

Subject Code:- ACSBS0101

	(c) both energy	
	(d) none	
1-d.	How many Bravais lattices are present in the crystal systems? (CO4)	1
	(a) 12	
	(b) 13	
	(c) 14	
	(d) 10	
1-e.	What conservation does first law of thermodynamics represent? (CO5)	1
	(a) energy	
	(b) mass	
	(c) temperature	
	(d) none	
2. Attem	pt all parts:-	
2.a.	How does energy decay in damped harmonic oscillator? (CO1)	2
2.b.	Two independent sources could not produce interference, why? (CO2)	2
2.c.	State two properties of matter waves. (CO3)	2
2.d.	Draw Plane (1,1,1) in cubic crystal. (CO4)	2
2.e.	What are the advantages of optical fibre over copper wire? (CO5)	2
	SECTION B	15

3. Answer any <u>three</u> of the following:-

- 3-a. A particle executes simple harmonic motion with amplitude of 5 cm. When the 5 particle is at 4 cm from the mean position, the magnitude of its velocity in SI units is equal to that of its acceleration. Then, calculate its periodic time in second. (CO1)
- 3-b. Newton's rings are observed in the reflected light of wavelength 5900 Å. The 5 diameter of 10th dark ring is 0.5 cm. Find the radius of curvature of the lens used. (CO2)
- 3.c. Calculate the energy difference between the ground state and first excited 5 state for electron in one dimensional rigid box of length 10⁻¹⁰m (CO3)
- 3.d. Iron has BCC structure with atomic radius 0.123 Angstroms. Find the volume of 5 unit cell. (CO4)
- 3.e. Compute the numerical aperture and the acceptance angle of an optical fibre 5 from the following data: $n_1(core)=1.48$ and n_2 (cladding) =1.46 (CO5)

4. Answer any one of the following:-

- 4-a. Find the expressions for velocity and acceleration in simple harmonic motion. 4 (CO1)
- 4-b. Illustrate Maxwell's four equations in vacuum and non-conducting medium. 4 (CO1)

5. Answer any <u>one</u> of the following:-

- 5-a. Describe Fresnel's biprism with neat diagram and explain how wavelength of 4 monochromatic light is determined by it? (CO2)
- 5-b. Discus the phenomenon of Fraunhofer diffraction at single slit and show that 4 the relative intensities of successive maxima are nearly – 1: $4/9\pi^2$: $4/25\pi^2$: $4/49\pi^2$ (CO2)

6. Answer any <u>one</u> of the following:-

- 6-a. What is Heisenberg's uncertainty principle? Apply it to find the radius of first 4 orbit. (CO3)
- 6-b. Illustrate the time dependent Schrodinger wave equation. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Define packing factor. Calculate packing factor in case of Simple cubic 4 structure(SC). (CO4)
- 7-b. Define conductors, semiconductors and insulators. Differentiate between them 4 on the basis of band width. Cite examples as well. (CO4)

8. Answer any one of the following:-

- 8 Discuss the construction and working of a CO₂ laser. (CO5) 4
- 8 What do you mean by heat engine? Also illustrate some application of 4 thermodynamics. (CO5)

4