Subject Code:- AOE0867

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: VIII - THEORY EXAMINATION (2023 - 2024)

Subject: Industry 4.0

Time: 3 Hours

Printed Page:-04

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice *Questions (MCQ's) & Subjective type questions.*

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- Where is the compressed air stored before distribution in a pneumatic system? 1-a. 1 (CO1)
 - (a) Receiver tank
 - (b) Control valve
 - (c) Air actuator
 - (d) Air cooler
- 1-b. Which component provides lubrication for pneumatic components? (CO1)
 - (a) Air filter
 - (b) Pressure regulator
 - (c) Lubricator
 - (d) Compressor

In which industry are industrial robots commonly used? (CO2) 1-c.

- (a) Automotive
- (b) Food and beverage
- (c) Entertainment
- (d) Construction

Page 1 of 4

1

1

20

Max. Marks: 100

1-d. Which type of robot is used for bomb disposal and reconnaissance? (CO2)

- (a) Mobile robots
- (b) Industrial robots
- (c) Domestic robots
- (d) Medical robots
- 1-e. Which deployment model limits access to cloud resources to a specific 1 organization? (CO3)

1

1

- (a) Public Cloud
- (b) Private Cloud
- (c) Community Cloud
- (d) Hybrid Cloud
- 1-f. What does PaaS provide to consumers in cloud computing? (CO3)
 - (a) Deployment of consumer-created applications
 - (b) Control over underlying infrastructure
 - (c) Ready-to-use software
 - (d) System monitoring capabilities
- 1-g. How is the Cumulative Distribution Function (CDF) defined for a continuous 1 random variable? (CO4)
 - (a) $F(x) = P(X \le x)$
 - (b) $F(x) = \int -\infty x f(t) dt$
 - (c) F(x) = ∑ξ≤xp(ξ)
 - (d) F(x) is the integral of f(x) from $-\infty$ to x
- 1-h. How is the probability calculated for a continuous random variable X lying in 1 the interval [a, b]? (CO4)
 - (a) $P(a \le X \le b) = \int abf(x) dx$
 - (b) $P(a \le X \le b) = P(a \le X \le b)$
 - (c) $P(a \le X \le b) = P(a \le X \le b)$
 - (d) P(X=x) = 0 for all x in Rx
- 1-i. Which industry extensively uses additive manufacturing for rapid prototyping? 1 (CO5)
 - (a) Automotive
 - (b) Agriculture
 - (c) Hospitality
 - (d) Retail

- 1-j. What is the role of support structures in FDM printing? (CO5)
 - (a) To provide stability during printing
 - (b) To color the print
 - (c) To remove excess material
 - (d) To heat the filament

2. Attempt all parts:-

2.a. What is the significance of a Filter Regulator Lubricator (FRL) unit in 2 compressed air systems? (CO1)

1

2

30

- 2.b. Describe the primary components of a robot manipulator. (CO2)
- 2.c. Explain the concept of unstructured data and provide examples of sources that 2 generate unstructured data. (CO3)
- 2.d. Define the expected value (mean) of a continuous random variable and explain 2 how it is calculated. (CO4)
- 2.e. Discuss the applications of reverse engineering in the automotive industry. 2 (CO5)

SECTION B

3. Answer any five of the following:-

- 3-a. Explain the process of converting mechanical energy into hydraulic energy 6 using pumps. (CO1)
- 3-b. Discuss the role of non-return valves and flow control valves in hydraulic 6 circuits. (CO1)
- 3-c. Investigate the role of robotic joints (revolute and prismatic) in enabling 6 specific types of robotic motions and applications. (CO2)
- 3-d. Discuss the ethical considerations and societal impacts of robotics, particularly 6 in terms of job displacement and human-robot interaction. (CO2)
- 3.e. Explain the concept of parallel processing in computing. Describe different 6 levels of parallelism and hardware/software approaches used to achieve parallel computing. (CO3)
- 3.f. Define and elaborate on the characteristics of a discrete state model in 6 simulation. How does a discrete state model differ from a continuous state model? (CO4)
- 3.g. Compare the material properties of PLA and ABS used in Fused Filament 6 Fabrication (FFF). How do these materials impact the strength, flexibility, and print quality of FFF parts? (CO5)

4. Answer any one of the following:-

- 4-a. Investigate the impact of fluid properties on the performance of hydraulic 10 systems. Discuss the effects of viscosity, temperature, and contamination on system efficiency and component longevity. (CO1)
- 4-b. Create a step-by-step guide to assembling a basic pneumatic control system 10 using directional control valves and actuators. (CO1)

5. Answer any <u>one</u> of the following:-

- 5-a. Evaluate the efficiency and effectiveness of SCARA robots in assembly line 10 operations, highlighting advantages in speed, precision, and versatility. (CO2)
- 5-b. Design a simulation scenario to optimize robotic performance in complex 10 manufacturing tasks, considering cycle time, efficiency metrics, and quality control standards. (CO2)

6. Answer any one of the following:-

- 6-a. Discuss the characteristics and benefits of System as a Service (SaaS) in cloud 10 computing. How does SaaS abstract infrastructure complexities and streamline application delivery? (CO3)
- 6-b. Discuss the main benefits of leveraging parallel computing in cloud 10 environments. How does parallel computing enhance system performance, scalability, and resource utilization? (CO3)

7. Answer any one of the following:-

- 7-a. Compare and contrast different types of simulation models, including 10 continuous time models and discrete time models. Provide real-world examples where each type of model would be most effective.(CO4)
- 7-b. Create a detailed simulation model for a discrete event system, such as a traffic 10 intersection. Define the system's state variables, events, and event routines. Describe how you would schedule and manage events using an event-driven approach. Explain the simulation clock mechanism and initialization routines. (CO4)

8. Answer any <u>one</u> of the following:-

- 8-a. Critically assess the significance of design optimization in additive 10 manufacturing. Provide examples of design strategies and computational tools used to enhance part performance and manufacturability. (CO5)
- 8-b. Discuss the future trends and challenges of additive manufacturing 10 technologies. How might advancements in materials science, automation, and post-processing techniques shape the future of AM? (CO5)

REG. MAY 2024