Page 1 of 6

Subject Code:- AAS0404

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: IV - THEORY EXAMINATION (2023 - 2024)

Subject: Optimization and Numerical Techniques

Time: 3 Hours

Printed Page:- 06

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. _____ method is an alternative method of solving a Linear 1 Programming Problem involving artificial variables.(CO1)
 - (a) Simplex Method
 - (b) Big-M Method
 - (c) Dual Simplex Method
 - (d) Graphical Method
- 1-b.If there is no non-negative replacement ratio in solving a Linear Programming1Problem then the solution is ______. (CO1)
 - (a) Feasible
 - (b) Bounded
 - (c) Infinite
 - (d) Unbounded
- 1-c. The first step in a branch and bound approach to solving integer programming 1 problems is to (CO2)

20

Max. Marks: 100

(a) Non linear problem.

(b) Change the objective function coefficients to whole integer numbers.

(c) Solve the original problem using LP by allowing continuous non integer solutions.

- (d) Compare the lower bound to any upper bound of your choice.
- 1-d. Modifications made for the mixed integer cutting plane method are (CO2)
 - (a) Value of the objective function is bounded
 - (b) Row corresponding to an integer variable serve as a source row
 - (c) Any row serve as a source row
 - (d) Row corresponding to an non- integer variable serve as a source row
- 1-e. A twice differentiable function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ is convex. Then the Hessian matrix is 1 (CO3)
 - (a) Negative-definite for all real numbers
 - (b) Negative semi-definite for all real numbers
 - (c) Positive-definite for all real numbers
 - (d) None of these.
- 1-f. Saddle point is a..... (CO3)
 - (a) Point where the function has maximum value
 - (b) Point where the function has minimum value
 - (c) Point where the function has zero value
 - (d) Point where function neither have maximum value nor minimum value
- 1-g. Rate of convergence of Bisection method is (CO4)
 - (a) Very slow
 - (b) Linear
 - (c) Quadratic
 - (d) 1.618
- 1-h. The nth divided difference of a polynomial of degree n is (CO4)

1

1

1

1

- (a) Zero
- (b) A constant
- (c) A variable
- (d) None of these

1-i. Find the least value must be assigned to * so that the number 197*5462 is 1 divisible by 9. (CO5)

1

2

30

6

- (a) 2
- (b) 1
- (c) 3
- (d) 4
- 1-j.

If $f: R \rightarrow R$ then which one of the following is many one (CO5)

(a) $f(x) = x^2 + 1, x \in \mathbb{R}$

(b) $f(x) = -x, x \in \mathbb{R}$

(c) $f(x) = x, x \in \mathbb{R}$

(d) None of these

2. Attempt all parts:-

2.a.	Write a short note on artificial variable. (CO1)	2
2.b.	Differentiate between the pure integer programming problem and the mixed	2
	programming problem. (CO2)	
2.c.	Write a short note on convex set. (CO3)	2

<i>x</i> :	0	1	2	3
<i>f</i> (<i>x</i>):	1	2	1	10

2.e. Find the least number which is divided by 4, 6, 8, 12 and 16 leaves a remainder 2 of 2 in each case. (CO5)

SECTION B

3. Answer any five of the following:-

- 3-a. Solve the following LPP graphically: (CO1) Maximize Z = 3x + 5ys.t. $x - 2y \le 6$ $x \le 10$ $y \ge 1$ $x,y \ge 0$.
- 3-b. Reshma wishes to mix two types of food P and Q in such a way that the vitamin 6 contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains 4 units/kg of Vitamin A and 2 units/kg of vitamin B. Formulate the LPP and solve graphically. (CO1)

- 3-c. Write short note on zero-one programming and Knapsack problem. (CO2)
- 3-d. Discuss the need of integer programming in mathematical programming.(CO2) 6
- 3.e. Find the maximum and minimum values of the function $f(x, y) = x^2 + 2y^2 4x 6$ 8y + 10. (CO3)
- 3.f. Find a real root of the equation $x \log_{10} x = 1.2$ by Regula-Falsi method correct to 6 two decimal places. (CO4)
- 3.g. In how many ways can the letter of word ASSASSINATION be arranged such 6 that (CO5)

i) All the four S came together

ii) All the Vowels occur together

SECTION C

4. Answer any one of the following:-

4-a. Solve by Big M method Maximize $z = 6x_1 + 4x_2$

Subject to

 $x_1 + x_2 \leq 5$

1 2

 $x_2 \ge 8$

 $x_1, x_2 \ge 0$ (CO1)

4-b. Solve the following LP problem by Two phase method: (CO1)

```
Maximize Z = 10x + 13y
```

```
s.t.
```

```
2x + y \le 8
```

```
x + 4y \ge 7
```

Both x and y all ≥ 0

5. Answer any <u>one</u> of the following:-

5-a. Find the optimum integer solution to the following LPP. (CO2)

Max. Z = X + Y

s.t.

3X+ 2Y ≤ 5 y ≤ 2

X, $Y \ge 0$ and are integers.

5-b.

Solve the following integer programming problem by using branch and bound 10 method: (CO2) Max. Z = 2X + 3Y s.t.

X+Y ≤ 35

50

10

6

10

2024

10

 $4X + 9Y \leq 36$

X, $Y \ge 0$ and are integers.

6. Answer any one of the following:-

6-a. Use the Lagrange's multipliers to solve the following non-linear programming 10 problem. Does the solution maximize or minimize the objective function? (CO3)

Optimize
$$Z = 2x_1^2 + x_2^2 + 3x_2^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

Subject to $x_1 + x_2 + x_3 = 20$,

$$x_1, x_2, x_3 \ge 0$$

6-b. Solve the following non-linear programming problem: (CO3) Optimize $Z = -x_1^2 - x_2^2 + 4x_1 + 6x_2$

Subject to
$$x_1 + x_2 \le 2$$
,
 $2x_1 + 3x_2 \le 12$,
 $x_1, x_2 \ge 0$

7. Answer any one of the following:-

7-a. Apply Runge Kutta method to find an approximate value of y when x = 0.2, 10 given that

dy/dx = *x* + *y*, *y* =1 when *x*=0. (CO4)

7-b.

10

10

Evaluate $\int_{0}^{1} \sqrt{\sin x + \cos x} \, dx$ using Simpson's one third rule and Simpson's third eight rule by dividing the interval into six equal parts. (CO4)

8. Answer any one of the following:-

8-a. For the following statement give which conclusion follows logically and why 10 explain (CO5)

Statements:

All the locks are keys.

All the keys are bats.

Some watches are bats.

Conclusions:

- A. Some bats are locks.
- B. Some watches are keys.
- C. All the keys are locks.
- 8-b. In a certain college 25% of boys and 10% of girls are studying mathematics. The 10 girls constitute 60% of the students. If a student is selected and is found to be

studying Mathematics find the probability that the student is a (CO5)

i. Girls

ii. Boy.

REG. MAY 2024