Printed page: 5

Subject Code: AMCA0401

Roll No:

Max. Marks:100

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

MCA

SEM: IV- THEORY EXAMINATION (2023-2024)

Subject:-Artificial Intelligence

Time: 3Hours

General Instructions:

1. Attempt all parts:-

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A 20

- Which of the following is NOT an application of Artificial Intelligence? (CO1) 1 1-a. (a) Image recognition (b) Sentiment analysis (c) Supply chain management (d) Statistical regression Which field is concerned with designing agents that can perceive environments and 1-b. 1 take actions to achieve their goals? (CO1) (a) Robotics (b) Natural Language Processing (c) Expert Systems (d) Machine Learning 1-c. Which of the following is an example of an uninformed search strategy?(CO2) 1 (a) A* search
 - (b) Depth-first search
 - (c) Greedy best-first search
 - (d) Hill climbing

1-d.	In adversarial search algorithms, which technique is used to optimize the search	1
	process by pruning branches of the game tree that are not likely to lead to a better	
	outcome? (CO2)	
	(a) Greedy search	
	(b) Depth-first search	
	(c) Alpha-beta pruning	
	(d) Uniform-cost search	
1-e.	Which graphical model represents probabilistic relationships between variables using directed acyclic graphs? (CO3)	1
	(a) Decision Trees	
	(b) Markov Chains	
	(c) Bayesian Networks	
	(d) Neural Networks	
1-f.	In a Hidden Markov Model (HMM), what represents the observable outcomes of a	1
	system? (CO3)	
	(a) Hidden states	
	(b) Emission probabilities	
	(c) Transition probabilities	
	(d) Observations	
1-g.	In which type of learning does the model learn from labelled data? (CO4)	1
	(a) Supervised learning	
	(b) Unsupervised learning	
	(c) Reinforcement learning	
	(d) Semi-supervised learning	
1-h.	In the Nearest Neighbour (NN) rule, a new data point is classified based on:(CO4)	1
	(a) a) Its distance to the farthest neighbour	
	(b) b) Its distance to the nearest neighbour	
	(c) c) Its average distance to all neighbours	
	(d) d) Its distance to the centroid of the dataset	
1 - i.	Which of the following tasks is NOT typically performed using computer vision?	1
	(CO5)	
	a) Object detection and recognition	
	b) Image enhancement and filtering	
	c) Speech recognition and synthesis	
	d) Video tracking and surveillance	

1-j. What is the primary objective of Principle Component Analysis (PCA)? (CO5) 1

4-a.	Provide examples of different types of intelligent agents and analyse how they operate	10
4. Ar	iswer any one of the following-	50
	SECTION – C	50
3-g.	Briefly explain the role of computer vision in pattern recognition. (CO5)	6
	brief example for each type. (CO4)	
3-f.	Define supervised learning and unsupervised learning in machine learning. Provide a	6
	resolution, forward chaining, and backward chaining. (CO3)	
3-е.	Compare and contrast various inference techniques in first-order logic, such as	6
	solutions. Provide examples of local search algorithms? (CO2)	
3-d.	Describe local search algorithms and optimistic problems in the context of search for	6
	examples of each. (CO2)	
3-c.	Differentiate between uninformed and informed search strategies, providing	6
	(CO1)	
3-b.	Explain the significance of the Turing Test in the context of Artificial Intelligence.	6
	(CO1)	
3-a.	Compare and contrast the fields of Artificial Intelligence and Machine Learning.	6
3. Ar	nswer any <u>five</u> of the following-	
	SECTION – B	30
2.e.	Explain the importance of feature selection in pattern recognition. (CO5)	2
	unsupervised learning? (CO4)	
2.d.	What is reinforcement learning, and how does it differ from supervised and	2
2.c.	Briefly explain Propositional Logic. (CO3)	2
2.b.	Define Adversarial Search. (CO2)	2
<i>2.</i> a.	extensively used and discuss their impact? (CO1)	2
2. At	Provide examples of real world applications where artificial intelligence is	2
2 1+	a) Maximizing the computational complexity of the algorithm	
	d) Maximizing the computational complexity of the algorithm	
	b) Minimizing the number of features in the dataset	
	a) Maximizing the variance of the projected data	

- in various environments and discuss the challenges and future prospects of intelligent agent systems. (CO1)
 4-b. Explore the diverse applications of Artificial Intelligence across various domains such 10
- as healthcare, finance, transportation, and entertainment. (CO1)

- 5. Answer any one of the following-
- 5-a. Discuss the significance of Alpha-Beta pruning in game playing algorithms. Explain 10 how it enhances the efficiency of the minimax algorithm, providing examples to illustrate its impact on search tree traversal. (CO2)
- 5-b. Compare and contrast uninformed search strategies, such as depth-first search and 10 breadth-first search, with informed search strategies, such as A* search. (CO2)
- 6. Answer any one of the following-
- 6-a. Describe Bayesian networks as graphical models for representing probabilistic 10 relationships and decision-making. Provide examples of decision problems modelled using utility theory and Bayesian networks.(CO3)
- 6-b. Explain utility theory and its role in decision-making under uncertainty. Discuss how 10 utility functions quantify preferences and help in selecting optimal actions in probabilistic environments. (CO3)
- 7. Answer any one of the following-
- 7-a. Discuss the working principle of Support Vector Machine (SVM) for classification 10 tasks. How does SVM find the optimal hyperplane to separate classes in the feature space. (CO4)
- 7-b. Explain the concept of reinforcement learning and its components, including agents, 10 environments, actions, and rewards. Discuss how reinforcement learning differs from supervised and unsupervised learning(CO4)
- 8. Answer any one of the following-
- 8-a. Explain Principle Component Analysis (PCA) and Linear Discriminant Analysis 10 (LDA) in detail, including their mathematical formulations and applications in pattern recognition. (CO5)
- 8-b. Discuss the challenges and techniques involved in natural language processing (NLP) 10 for pattern recognition. Explain the process of text preprocessing, feature extraction, and classification in NLP-based pattern recognition systems. (CO5)