	Roll. No:	
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA	
	(An Autonomous Institute Affiliated to AKTU, Lucknow)	
	B.Tech	
	SEM: III - CARRY OVER THEORY EXAMINATION - AUGUST 2023	
	Subject: Discrete Structures	
Time:	3 Hours Max. Marks: 10	0
	l Instructions:	
	rify that you have received the question paper with the correct course, code, branch etc.	
	Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice	е
	ns (MCQ's) & Subjective type questions.	
	mum marks for each question are indicated on right -hand side of each question.	
	rate your answers with neat sketches wherever necessary.	
	ne suitable data if necessary.	
-	rably, write the answers in sequential order.	_
	heet should be left blank. Any written material after a blank sheet will not b ed/checked.	е
evaluate		
	SECTION A 20)
1. Atten	npt all parts:-	
1-a.	The set O of odd positive integers less than 10 can be expressed by	1
	(CO1)	
	(a) {1, 2, 3}	
	(b) {1, 3, 5, 7, 9}	
	(c) {1, 2, 5, 9}	
	(d) {1, 5, 7, 9, 11}	
4 1-		4
1-b.		1
	for all a and b in the domain of f. (CO1)	
	(a) One-to-many	
	(b) One-to-one	
	(c) Many-to-many	
	(d) Many-to-one	
1-c.	A function $f:(M,\square) \to (N,\times)$ is a homomorphism if (CO2)	1
	(a) $f(a, b) = a*b$	

Printed Page:- 05

Subject Code:- ACSE0306 / ACSEH0306

	(b) $f(a,b) = a / b$	
	(c) $f(a, b) = f(a)+f(b)$	
	(d) $f(a, b) = f(a)*f(a)$	
1-d.	A cyclic group is always an (CO2)	1
	(a) Ring	
	(b) Field	
	(c) Abelian Group	
	(d) Zero Ring	
1-e.	A free semilattice has the property. (CO3)	1
	(a) intersection	
	(b) commutative and associative	
	(c) universal	
	(d) identity	
1-f.	A POSET in which every pair of elements has both least upper bound and	1
	greatest lower bound term as. (CO3)	
	(a) Lattice	
	(b) Sublattice	
	(c) Walk	
	(d) POSET	
1-g.	$p \leftrightarrow q$ is logically equivalent to (CO4) (a) $(p \rightarrow q) \rightarrow (q \rightarrow p)$ (b) $(p \rightarrow q) \lor (q \rightarrow p)$ (c) $(p \rightarrow q) \land (q \rightarrow p)$ (d) $(p \land q) \rightarrow (q \land p)$	1
	$(a) (p \rightarrow q) \rightarrow (q \rightarrow p)$	
	(b) $(p \rightarrow q) \lor (q \rightarrow p)$	
	$(c) (p \rightarrow q) \wedge (q \rightarrow p)$	
1-h.	What rules of inference are used in this argument? "It is either colder than Himalaya today or the pollution is harmful. It is hotter than Himalaya today.	1
	Therefore, the pollution is harmful." (CO4)	
	(a) Conjunction	
	(b) Modus ponens	
	(c) Disjunctive syllogism	
	(d) Hypothetical syllogism	
1-i.	The number of circuits that can be created by adding an edge between any two	1
	vertices in a tree is (CO5)	

(a) Two (b) Exactly one (c) At least two (d) None A linear graph consists of vertices arranged in a line. (CO5) 1 1-j. (a) TRUE (b) FLASE (c) either true or false (d) cannot determined 2. Attempt all parts:-2.a. 2 Define Equal and Equivalent Set with example. (CO1) In a group (G, *), Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$, for all a,b is the element in G. 2.b. 2 (CO2) How we can say a lattice to be a partial lattice. Justify with example. (CO3) 2 2.c. 2.d. Prove that if x is irrational, then 1/x is irrational. (CO4) 2 2.e. Define Regular graph and Complete Bipartite graph with example. (CO5) 2 **SECTION B** 30 3. Answer any five of the following:-Differentiate contraposition and contradiction with example. (CO1) 3-a. 6 3-b. Give an example of two uncountable sets A and B such that A – B is (CO1) 6 a) finite. b) countably infinite. c) uncountable. Let G be a finite group and let S be a non-empty set. Suppose that G acts on S 3-c. 6 freely and transitively. Prove that G=S. That is, the number of elements in G and S are the same. (CO2) 3-d. Let R=(R,+) be the additive group of real numbers and let $R\times=(R\square\{0\},\square)$ be the 6 multiplicative group of real numbers. (a) Prove that the map exp:R→R× defined by exp(x)=ex is an injective group homomorphism. (b) Prove that the additive group R is isomorphic to the multiplicative group R+= $\{x \in R \mid x>0\}$. (CO2) 3.e. Define POSET with example. Explain types of Lattice with suitable example. 6 (CO3) 3.f. Establish these logical equivalences, where x does not occur as a free variable 6 in A. Assume that the domain is nonempty. (CO4)

	•				
	a) $(\forall x P(x)) \land A \equiv \forall x (P(x) \land A)$ b) $(\exists x P(x)) \land A \equiv \exists x (P(x) \land A)$.				
3.g.	Explain the following: (CO5)	6			
	i. Directed Graph ii. Weighted Graph				
	iii. Null Graph				
	SECTION C	50			
4. Answe	er any <u>one</u> of the following:-				
4-a.	State and prove both De'morgans laws. (CO1)	10			
4-b.	What is closure properties of relations, explain with example. (CO1)	10			
5. Answer any <u>one</u> of the following:-					
5-a.	find all the generators of cyclic group $G = \{1,2,3,4\}$ with respect to operation X5. (CO2)	10			
5-b.	Let G and G' be groups and let $f:G \rightarrow G'$ be a group homomorphism. If H' is a normal subgroup of the group G', then show that H=f -1(H') is a normal	10			
	subgroup of the group G. (CO2)				
6. Answe	er any <u>one</u> of the following:-				
6-a.	Show that in a complemented , distributive lattice the following are equivalent :	10			
	(CO3) (i). a ^ b' = 0,				
	(ii). $a^{1}b = 0$,				
6-b.	Consider the subset {2,3} {4,6} and {3,6}, and ({1,2,3,4,5,6}, /) is the poset. (CO3) i) Draw the Hasse Diagram.	10			
	ii) Find the Lower bound and Upper bound of each subset if I exists.iii) Find GLB and LUB of each subset if it exists.				
7. Answe	er any <u>one</u> of the following:-				
7-a.	Let Q(x, y) denote the statement "x is the capital of y." What are these truth values? (CO4)	10			
	a) Q(Denver, ¬Colorado)				
	b) Q(¬Detroit, Michigan)				
	c) Q(¬Massachusetts, ¬ Boston)				
	d) Q(New York, New York)				
7-b.	Find the dual of each of these compound propositions. (CO4)	10			
	a) $p \land \neg q \land \neg r$,				
	b) $(p \land q \land r) \lor s$,				

c) $(p \lor F) \land (q \lor T)$

8. Answer any one of the following:-

- 8-a. For maximal planar graph G, prove or disprove the following: (i) if the number 10 of vertices is less than or equal to 11 then G has minimum degree less than or equal to 4. (ii) if the number of vertices is greater than or equal to 4 then G has minimum degree greater than or equal to 3. (iii) every 5-connected maximal planar graph has at least 12 vertices. (CO5)
- 8-b. Suppose the characters 'a', 'b', 'c', 'd', 'e', 'f', 'g' are stored in a Binary Search 10 Tree (BST). Draw a BST that is as tall as possible and contains all these characters. Also draw a BST that is as short as possible and contains all characters. (CO5)

