Page 1 of 5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) **B.Tech SEM: III - CARRY OVER THEORY EXAMINATION - AUGUST 2023 Subject: Electronic Devices**

Time: 3 Hours

Printed Page:-05

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice *Questions (MCQ's) & Subjective type questions.*

2. Maximum marks for each question are indicated on right -hand side of each question.

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- The Fermi-level in a n type semiconductor is shifted towards (CO1) 1-a.
 - (a) Conduction band
 - (b) Valance band
 - (c) Does not shift
 - (d) None of these

In FB case ideal diode acts like a switch. (CO1) 1-b.

- (a) short
- (b) open
- (c) normal
- (d) None of these
- For what kind of amplifications can the active region of the common-emitter 1-c. 1 configuration be used? (CO2)
 - (a) Voltage
 - (b) Current

Subject Code:- AEC0302N

Roll. No:

20

1

1

Max. Marks: 100

- (c) Power
- (d) All of the above
- 1-d. A BJT consists of three regions: (CO2)
 - (a) base, emitter and collector.
 - (b) base, source and collector.
 - (c) base,gate and collector.
 - (d) gate, source and collector.
- 1-e. The value of transconductance decreases in simplified low frequency 1 equivalent circuit of n-channel MOSFET due to increase in the value of _____ (CO3)

1

1

1

- (a) Source resistance
- (b) Load resistance
- (c) Both a and b
- (d) None of the above
- 1-f.It is the insulating layer of _____ in the MOSFET construction that accounts1for the very desirable high input impedance of the device. (CO3)
 - (a) SiO
 - (b) GaAs
 - (c) SiO2
 - (d) HCl
- 1-g. MOSFETs make better power switches than BJTs because they have (CO4)
 - (a) ower turn-off times.
 - (b) lower on-state resistance.
 - (c) a positive temperature coefficient.
 - (d) all of the above
- 1-h. The self-bias configuration eliminates the need for (CO4)
 - (a) two dc supplies
 - (b) 1 dc supplies
 - (c) two ac supplies
 - (d) None of these
- 1-i. Which of the following should not be the characteristic of the solar cell 1 material? (CO5)
 - (a) High Absorption

- (b) High Conductivity
- (c) High Energy Band
- (d) High Availability
- 1-j. The Tunnel diode is best suited for (CO5)
 - (a) Amplitude limiters
 - (b) Amplifiers
 - (c) Oscillators
 - (d) Rectifiers

2. Attempt all parts:-

2.a. Explain physically the meaning of the following statement: An electron and a 2 hole recombine and disappear. (CO1)

1

30

- 2.b. What is need of Biasing? (CO2)
 2.c. Define depletion mode for n-channel MOSFET. (CO3)
 2.d. Draw the symbol of MOSFET and JFET. (CO4)
 2.e. Draw a circuit which uses a breakdown diode to regulate the voltage across a
 2
 - variable load and normal input. (CO5)

SECTION B

3. Answer any five of the following:-

- 3-a. What is Fermi Level? Show the fermi level position in N-type semiconductor at 6 0,300 and 400 Kelvin. (CO1)
- 3-b. Consider a Ge crystal at room temperature doped with 5×10^15/cm3 As atoms. 6 Find the equilibrium electron, the hole concentrations, and the position of the Fermi level w.r.t intrinsic energy level (Ei). Draw the energy band diagram also. (CO1)
- 3-c. Determine the quiescent levels of I $_{\mbox{CQ}}$ and V $_{\mbox{CEQ}}$ for the network of Figure. ($\,$ 6 CO2)

- 3-d. Compare between FET & BJT. Explain the factors which determine the switching 6 speed of a BJT. (CO3)
- 3.e. Draw and explain small signal equivalent model for CE configuration. (CO4) 6
- 3.f. What is difference between avalanche and zener breakdown? Explain in details. 6 (CO2)

6

50

3.g. Enumerate the construction and operation of LED. (CO5)

SECTION C

4. Answer any one of the following:-

- 4-a. Consider a particular material with Fermi energy of 6.25eV and that the 10 electrons in the material follow the Fermi-Dirac distribution function. Calculate the temperature at which there is a 1.0% probability that a state of 0.30eV below the Fermi energy level will not contain electron. (CO1)
- 4-b. Differentiate Direct and Indirect Semiconductor with suitable E-K band 10 diagram. (CO1)

5. Answer any one of the following:-

- 5-a. Draw the common base configuration and sketch the input and output 10 characteristics. Also explain active region, cutoff region and saturation region by indicating them on the characteristic curve. (CO2)
- 5-b. An npn silicon transistor has V_{CC} = 6 V and the collector load R_C = 2.5 k Ω . Find : 10 (i) The maximum collector current that can be allowed during the application of signal for faithful amplification. (ii) The minimum zero signal collector current required. (CO2)

6. Answer any one of the following:-

6-a. Sketch the C–V characteristics of a MOS capacitor with an n-type substrate 10 under the low-frequency condition. How do the characteristics change for the

high-frequency condition? (CO3)

6-b. Explain Enhancement mode N-MOSFET. Identify all parts of the device and 10 explain its operation. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Explain small signal equivalent model for MOSFET. Calculate Input Resistance 10
 Ri, Output Resistance Ro, and Voltage gain Av. (CO4)
- 7-b. Draw and explain single stage CS amplifier & CE amplifier with re model. (CO4) 10

8. Answer any one of the following:-

- 8-a. Explain the construction and operation of LED. Draw the different 10 characteristics of LED. (CO5)
- 8-b. Explain working of Varactor diode with VI characteristics. Also discuss how it 10 can be used as variable capacitor. (CO5)

 $\frac{1}{2}$