Printed I	Page:-04 Subject Code:- AMTME0202 Roll. No:					
ļ	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA					
(An Autonomous Institute Affiliated to AKTU, Lucknow)						
	M.Tech SEM: II - THEORY EXAMINATION (2023 - 2024)					
Subject: Composite Materials						
Time: 3						
General	Instructions:					
IMP: Veri	ify that you have received the question paper with the correct course, code, branch etc.					
1. This Q	uestion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice					
	s (MCQ's) & Subjective type questions.					
	um marks for each question are indicated on right -hand side of each question.					
	ate your answers with neat sketches wherever necessary.					
	e suitable data if necessary. ably, write the answers in sequential order.					
-	eet should be left blank. Any written material after a blank sheet will not be					
	d/checked.					
	SECTION A 15					
1. Attem	pt all parts:-					
	Size range of dispersoids used in dispersion strengthened composites. (CO1)					
	(a) 0.01-0.1 μm					
	(b) 0.01-0.1 nm					
	(c) 0.01-0.1 mm					
	(d) None					
1-b.	which of the fiber material would be highly strong (CO2)					
	(a) whisker					
	(b) fiber					
	(c) wires					
	(d) none of above					
1 6						
1-c.	Which of the following materials can be used to make the thermoplastic 1 prepreg tapes for the Thermoplastic Tape Winding? (CO3)					
	(a) Carbon					
	(b) Polypropylene					

	(d) All of these	
1-d.	Which of the following is/are the disadvantage(s) of Carbon-Carbon Composites? (CO4)	1
	(a) Low coefficient of thermal expansion	
	(b) High thermal conductivity	
	(c) Low oxidation resistance	
	(d) All of these	
1-e.	A laminate is called quasi-isotropic when its is similar to that of an isotropic material. (CO5)	1
	(a) bending stiffness matrix	
	(b) extensional stiffness matrix	
	(c) coupling stiffness matrix	
	(d) extensional and coupling stiffness matrix	
2. Attem	pt all parts:-	
2.a.	How to identify the potential application of the Al-MMCs material? (CO1)	2
2.b.	Which material properties that can be improved by forming a composite material? (CO2)	2
2.c.	What is a material with very similar properties to carbon fiber but is much cheaper? (CO3)	2
2.d.	What is the failure criteria for composite materials? (CO4)	2
2.e.	Is the parallel axis theorem concept valid with the laminate plate theory? (CO5)	2
	SECTION B	20
3. Answe	er any <u>five</u> of the following:-	
3-a.	What is the difference between a composite and an alloy? (CO1)	4
3-b.	What is the role reinforcement in composite materials? (CO1)	4
3-c.	Describe the major differences in the processing of composites having a thermoset matrix and those having a thermoplastic matrix. (CO2)	4
3-d.	Aluminum and magnesium are two common metal matrix materials. What is the viscosity of molten aluminum and magnesium? (CO2)	4
3.e.	Explain briefly any two methods used for producing laminar composites. Give examples and applications for laminar composites. (CO3)	4
3.f.	Why do we need standards in composites testing? List down the common	4

(c) Polyamide

	standards available for testing in composites. (CO4)	
3.g.	Write the number of independent elastic constants for three-dimensional anisotropic, monoclinic, orthotropic, transversely isotropic, and isotropic materials. (CO5)	2
	SECTION C	35
4. Ansv	wer any <u>one</u> of the following:-	
4-a.	Describe the use of composite materials in the Voyager airplane that circled the globe for the first time without refueling in flight. (CO1)	7
4-b.	Discuss the use of composite materials in civilian aircraft, with special attention to Boeing 787 and Airbus A380 aircraft. (CO1)	7
5. Ansv	wer any <u>one</u> of the following:-	
5-a.	What are the different physical forms that reinforcements are available in? Discuss and make a comparative note of these forms in glass, carbon fibers, and aramid fibers. (CO2)	7
5-b.	What are prepregs and molding compounds? Write a brief note giving the similarities and differences between the two ready-to-use material forms. (CO2)	7
6. Ansv	wer any <u>one</u> of the following:-	
6-a.	Write a brief note on the need for machining of composites. What are the different types of machining involved in PMCs? (CO3)	7
6-b.	Consider a cylindrical mandrel with hemispherical end domes. Consider a geodesic helical fiber path. Show that the mandrel rotation corresponding to the fiber path in one end dome is 90°, irrespective of the diameters at the cylinder and pole openings. (CO3)	7
7. Ansı	wer any <u>one</u> of the following:-	
7-a.	Compare the tensile strength, tensile modulus of elasticity, elongation, and density properties of glass, carbon, and aramid fibers. (CO4)	7
7-b.	What are the main property contributions of the carbon fibers in carbon-fiber-reinforced plastics? What are the main property contributions of the matrix plastic? (CO4)	7
8. Ans	wer any <u>one</u> of the following:-	
8-a.	A unidirectional composite is subjected to the following stresses: $\sigma L = 3.0$ MPa, $\sigma T = 0.5$ MPa, and $\tau LT = 3.5$ MPa, Find the normal and shear strains. Engineering constants are EL= 14.0 GPa, ET= 3.5 GPa, GLT = 4.2 GPa, $\nu LT = 0.4$ and $\nu TL = 0.1$ (CO5)	7
8-b.	Explain why a high-modulus unidirectional graphite-fiber-reinforced epoxy	7

beam fractured in impact breaks cleanly into two halves without delamination and with little fiber pullout, whereas an equivalent glass fiber composite exhibits considerable delamination on failure. (CO5)