Subject Code:- BAS0201A

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: II - THEORY EXAMINATION (2023 - 2024)

Subject: Engineering Physics

Time: 3 Hours

Printed Page:- 04

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. *This Question paper comprises of* **three Sections -A, B, & C.** *It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.*

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Choose the incorrect statement concerning the theory of relativity: (CO1)
 - (a) It proves the existence of ether
 - (b) Velocity of light is independent of the motion of observer

(c) There is variation of mass with velocity

(d) Time is relative

1-b. Decay of µ mesons supports: (CO1)

- (a) Length contraction
- (b) Time dilation
- (c) mass energy equivalence
- (d) variation of mass with velocity

1-c. According to wave mechanics, a material particle is associated with: (CO2)

- (a) A single wave
- (b) A wave packet
- (c) Two progressive waves travelling in the same direction

Max. Marks: 100

20

1

1

1

(d) A ripple

- 1-d. Schrödinger's equation is a : (CO2)
 - (a) First order differential equation
 - (b) Second order differential equation
 - (c) Both of the above
 - (d) None of the above
- 1-e. If there are N number of slits in a grating spectra, then there will be how many 1 secondary maxima? (CO3)

1

1

1

1

- (a) N
- (b) N 1
- (c) N 2
- (d) 2N
- 1-f. A thin film is observed in white light. The colour of the film seen at a particular 1 point depends upon: (CO3)
 - (a) Location of observer
 - (b) Width of the source
 - (c) Distance of the source
 - (d) Brightness of the source
- 1-g. The movement of a hole results from : (CO4)
 - (a) Excitation due to high temperature
 - (b) Change in number of protons in the atom
 - (c) The vacancy filled by a valence electron from the neighbouring atom
 - (d) None of above
- 1-h. The smallest Unit in digit system is : (CO4)
 - (a) Bit
 - (b) Byte
 - (c) Kilobyte
 - (d) Megabyte
- 1-i. Laser beam is made of (CO 5)
 - (a) Electrons
 - (b) Highly coherent photons
 - (c) Very light and elastic particles
 - (d) None of above

1-j. What is the other name for a maximum external incident angle? (CO5)

1

2

2

2

2

30

6

50

- (a) Optical angle
- (b) Total internal reflection angle
- (c) Refraction angle
- (d) Wave guide acceptance angle

2. Attempt all parts:-

- 2.a. How GPS is used? (CO 1)
- 2.b. What does square of wave function (Ψ) signify? (CO 2)
- 2.c. Discuss the working principle of optical filters. (CO 3)
- 2.d. Explain the concept of conduction and valence bands with neat diagrams. (CO 24)
- 2.e. Why cooling is required in Ruby laser? (CO5)

SECTION B

3. Answer any five of the following:-

- 3-a. Show that the circle $x^2 + y^2 = a^2$ in frame S appears to be an ellipse in frame S' 6 which is moving with velocity 'v' relative to S. (CO 1)
- 3-b. A clock keeps correct time. With what speed should it be moved relative to an 6 observer so that it may be appear to lose 4 minutes in 24 hours. (CO 1)
- 3-c. Calculate the de-Broglie wavelength associated with a proton moving with a 6 velocity equal to (1/50) th of the velocity of light. (CO2)
- 3-d. Compute the energy of a neutron confined to nucleus which is considered as 6 box with size of 10⁻¹⁴ m. (CO2)
- 3.e. In a Newton's ring experiment, the diameter of the 5th ring is 0.30 cm and 6 diameter of the 15th ring is 0.62cm. Find the diameter of the 25th ring. (CO 3)
- 3.f. Find the value of f(E) for $E-E_f = 0.02eV$ at 100K. (CO4)
- 3.g. Calculate the energy and momentum of a photon of a laser beam of 6 wavelength 6328 Å. (CO 5)

SECTION C

4. Answer any one of the following:-

- 4-a. Show from Lorentz transformation that two events simultaneous($t_1=t_2$) at 10 different positions ($x_1 \neq x_2$)(in a reference frame S are not in general simultaneous in another reference frame. (CO1)
- 4-b. Deduce the relativistic velocity addition theorem. Show that it is consistent with 10
 Einstein's second postulate of special theory of relativity. (CO1)

5. Answer any one of the following:-

- 5-a. What is Heisenberg uncertainty principle? Apply it to find the radius of Bohr's 10 first orbit. (CO2)
- 5-b. Apply Schrodinger's wave equations for particle in one dimensional box and 10 solve it to obtain the Eigen values and Eigen functions. (CO2)

6. Answer any <u>one</u> of the following:-

- 6-a. Discuss the formation of interference fringes due to a wedge shaped thin film 10 seen by normally reflected sodium light and obtain an expression for the fringe width. (CO3)
- 6-b. Discuss Rayleigh criterion for resolution. What do you mean by the resolving 10 power of grating? Derive the necessary expression for it. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Discuss the position and variation of Fermi level with temperature in the p-type 10 semiconductor. (CO4)
- 7-b. What is the principle of working of Solar cell? Explain the construction and 10 working of Solar cell ? (CO4)

8. Answer any one of the following:-

- 8-a. Describe the propagation mechanism and also discuss signal loss in optical 10 fibers. (CO5)
- 8-b. What is the working principle of laser? Discuss the construction and working of 10 a Ruby laser. (CO5)