. Page 1 of 4

Subject Code:- BCSBS0203

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: II - THEORY EXAMINATION (2023 - 2024)

Subject: Data Structures & Algorithms

Time: 3 Hours

Printed Page:- 04

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice *Questions (MCQ's) & Subjective type questions.*

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- To verify whether a function grows faster or slower than the other function, we 1-a. 1 have some asymptotic or mathematical notations, which is _____.(CO1)
 - (a) Big Omega Ω (f)
 - (b) Big Theta θ (f)
 - (c) Big Oh O (f)
 - (d) All of the above
- 1-b. Which of the following notation used to represent lower bound of complexity. 1 (CO1)
 - (a) Big-Oh
 - (b) Big-Theta
 - (c) Big-Omega
 - (d) All of the above
- 1-c. Which of the following function is used to de-allocate memory, allocated 1 dynamically. (CO2)

20

Max. Marks: 100

- (b) calloc()
- (c) free()
- (d) realloc()
- 1-d. Which of the following is/are application of stack (CO2)
 - (a) Recursion
 - (b) Permutation
 - (c) Polish Notation
 - (d) All of Above
- 1-e. Which of the following tree has left child less than parent and right child 1 greater than parent. (CO3)

1

1

1

1

1

- (a) Binary search tree
- (b) AVL tree
- (c) B-tree
- (d) All of above
- 1-f. Time complexity of search operation in AVL tree is. (CO3)
 - (a) O(n)
 - (b) O(nlogn)
 - (c) O(logn)
 - (d) O(n*n)
- 1-g. What is the wrost case time complexity of sequential search. (CO4)
 - (a) O(1)
 - (b) O(n)
 - (c) O(nlogn)
 - (d) O(n*n)
- 1-h. A sorting technique is called stable if: (CO4)
 - (a) It takes O(n*log(n)) time
 - (b) It maintains the relative order of occurrence of non-distinct elements
 - (c) It uses divide and conquer paradigm
 - (d) It takes O(n) space
- 1-i. Which of the following is true about graph. (CO5)
 - (a) Linear Data Structure
 - (b) Non-Linear Data Structure
 - (c) Both a and b

(d) None of the above
1-j. Files are logically partitioned into storage units of fixed-length known as 1
(CO5)

•

- (a) Sectors
- (b) Track
- (c) Segment
- (d) Block

2. Attempt all parts:-

2.a.	Define space complexity of an algorithm (CO1)	2
2.b.	Create a structure to define singly link list (CO2)	2
2.c.	Write short on B+ -Tree.(CO3)	2
2.d.	Write short note on linear search. (CO4)	2
2.e.	Write short note on directed graph. (CO5)	2
	SECTION B	30
3. Answ	er any <u>five</u> of the following:-	
З-а.	List the four basic Operations of Data structures. (CO1)	6
3-b.	Define algorithms and wirte its characteristics. (CO1)	6
3-с.	Write algorithm for enqueue and dequeue operation in circular queue. (CO2)	6
3-d.	Explain and implement a single linked list with an example. Also write a algorithm for deletion at end. (CO2)	6
3.e.	Write algorithm for insertion and deletion in binary search tree. (CO3)	6
3.f.	Desribe open addressing technique of collision resolution. (CO4)	6
3.g.	Explain Breadth First Search traversal of Graph using an example. (CO5)	6
	SECTION C	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	Write short note on following asymptotic notation (CO1): 1) Big-Oh. 2) Big-Theta. 3) Big-Omega.	10
4-b.	Explain classification of data structure. (CO1)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	Define 2-D array. Explain memory management of 2-D array with their memory access formula. (CO2)	10
5-b.	Write application of stack with example. (CO2)	10

6. Answer any <u>one</u> of the following:-

- 6-a.Define AVL tree. Explain the term balance factor in AVL tree. Describe various10rotations performed on AVL tree with the help of neat diagram. (CO3)
- 6-b. Write the characteristics of a B-Tree of order m. Create B-Tree of order 5 from 10 the following lists of data items :20, 30, 35, 85, 10, 55, 60, 25, 5, 65, 70, 75, 15, 40, 50, 80, 45. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Explain different types of hash functions with example.(CO4) 10
- 7-b. Define heap sort. Sort following elements using heap sort: 81, 89, 9, 11, 14, 76, 10 54, 22. (CO4)

8. Answer any one of the following:-

EG.

- 8-a. Explain Prim's algorithm of findng minimum spanning tree with an example. 10 (CO5)
- 8-b. Define minimum spanning tree and also explain kruskal's algorithm of findng 10 minimum spanning tree with an example. (CO5)