Roll. No:

Subject Code:- AEC0601

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: VI - THEORY EXAMINATION (2023 - 2024)

Subject: Digital Signal Processing

Time: 3 Hours

Printed Page:- 04

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Which of the following should be done in order to convert a continuous-time 1 signal to a discrete-time signal? (CO1)
 - (a) Sampling
 - (b) Differentiating
 - (c) Encoding
 - (d) Quantization
- 1-b. If x(n) and X(k) are an N-point DFT pair, then X(k+N)=? (CO1)
 - (a) X(-k)
 - (b) -X(k)
 - (c) X(k)
 - (d) None of above

1-c. The poles of butterworth filter lie on a... (CO2)

- (a) circle
- (b) parabola

be

1

1

Max. Marks: 100

20

- (c) ellipse
- (d) helix

1-d. Relationship between s and z for bilinear transformation method...(CO2)

- (a) z=(2-sT)/(2+sT)
- (b) s=e^(zT)
- (c) z=e^(-sT)
- (d) z= (2+sT)/(2-sT)
- 1-e. Out of all the windows available the one which has the narrowest main lobe for 1 a given length is...(CO3)

1

1

- (a) Rectangular
- (b) Hanning
- (c) Hamming
- (d) Blackman
- 1-f. If a linear phase filter has a phase response of 40 degree at 200 Hz, what will be 1 its phase response at a frequency of 400 Hz. (CO3)
 - (a) 35 degree
 - (b) 45 degree
 - (c) 40 degree
 - (d) 80 degree
- 1-g. When the no of delays is equal to order of the system, the structure is called... 1 (CO4)
 - (a) Canonic
 - (b) Noncanonic
 - (c) Cascade
 - (d) None of these
- 1-h. For linear phase realization of FIR filter, the impulse response should be.. (CO4) 1
 - (a) Symmetric
 - (b) antisymmetric
 - (c) cascade
 - (d) parallel
- 1-i. In multirate signal processing, interpolation method is used to....(CO5)
 - (a) decrease the sampling rate
 - (b) Increase the sampling rate

- (c) no change
- (d) None of thses
- 1-j. Recursive Least Square Algorithm is used to overcome the problem 1 of.....of LMS algorithm. (CO5)
 - (a) slow convergence
 - (b) fast convergence
 - (c) nonlinear property
 - (d) None of these

2. Attempt all parts:-

2.a.	Draw the basic block diagram of digital signal processing. (CO1)	2
2.b.	Differentiate between analog and digital filter.(CO2)	2
2.c.	What is Gibbs phenomenon explain with diagram? (CO3)	2
2.d.	Difference between system analysis and system realization. (CO4)	2
2.e.	Enlist the applications of multirate signal processing. (CO5)	2
	SECTION B	30
3. Answer any <u>five</u> of the following:-		
3-a.	Compute the 4-point DFT of a given sequence $x(n)=\{0,1,2,1\}$. Also sketch the	6
	magnitude and phase spectrum. (CO1)	
3-b.	What are the basic differences between linear and circular convolutional? (CO1)	6
3-c.	Draw the frequency mapping in bilinear transformation method. Write down	6
	the advantages and disadvantages of bilinear transformation method. (CO2)	
3-d.	Transform the analog filter transfer function H(s)=0.5(s+4)/(s+1)(s+2), into a	6
	digital filter H(z) using the impulse invariant method.(CO2)	
3.e.	Derive the expression for linear phase and symmetric impulse response for an	6
	FIR filter. (CO3)	
3.f.	Briefly explain the advantages in representing digital filter in block diagram	6
	form. (CO4)	
2		~

3.g.Compute the up sampled version of signals for up sampling factor (a) I=2 (b)6I=3 (c) I=4 for discrete time signal x(n)={1,2,3,4,5,6} , (CO5)

50

SECTION C

4. Answer any <u>one</u> of the following:-

4-a. State and prove circular convolution property of DFT. What is zero padding? 10 What are its uses? (CO1)

4-b. Define bit reversal and in place computation. Also compute the 8-point DFT of 10 the given sequence $x(n) = \{1, 2, 1, 2, 1, 2, 1, 2\}$ using DIF-FFT algorithm. (CO1)

5. Answer any <u>one</u> of the following:-

- 5-a. Briefly explain the Chebyshev type-1 and type-2 filter with suitable frequency 10 response. Also explain the design process of digital Chebyshev filter with suitable example. (CO2)
- 5-b. Convert a single pole low pass Butterworth filter with system function: 10

$$H(z) = \frac{0.245(1+z^{-1})}{(1-0.509z^{-1})}$$

into a BPF with upper and lower cut off frequencies are 0.6π and 0.4π respectively. The LPF has 3 dB bandwidth = 0.2π .(CO2)

6. Answer any one of the following:-

- 6-a. Explain the characteristic of kaiser window. Briefly explain the design steps for 10 designing of finite impulse response filter using kaiser window with suitable diagram. (CO3)
- 6-b. Explain the phenomenon of finite word length effect in digital system with the 10 help of Limit cycle oscillation and coefficient quantization error. (CO3)

7. Answer any one of the following:-

7-a. Obtain the direct form-I and direct form-II structure of the system described 10 by difference equation. (CO4)

$$y(n) = 2r \cos(\omega_0) y(n - 1) - r^2 y(n - 2) + x(n) - r \cos(\omega_0) x(n - 1)$$

7-b. Define transpose structure. Also obtain direct form and cascade form 10 realization for the transfer function of an FIR system given by (CO4)

$$H(z) = 1 + \frac{3}{8}z^{-1} - \frac{3}{32}z^{-2} + \frac{5}{64}z^{-3} - \frac{3}{16}z^{-4}$$

8. Answer any one of the following:-

- 8-a. Explain the process of Two channel Quadrature Mirror Filter bank with suitable 10 block diagram. Also write down the main applications of QMF bank. (CO5)
- 8-b. Derive the expression for LMS algorithm in detail. Also explain convergence 10 and stability of this algorithm. (CO5)