NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA, G.B. NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Computer Science and Engineering (Internet of Things) Fourth Year

(Effective from the Session: 2023-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science And Engineering (Internet Of Things) <u>EVALUATION SCHEME</u> SEMESTER-VII

Sl. No.	Subject Codes	Subject Name	Periods		Evaluation Scl			cheme s		End Semester		Credit	
INO.	Codes		L	Т	Р	СТ	TA	TOTAL	PS	TE	PE		
		WEEKS COMPULSORY	Y IN	DL	JCT	ION I	PROC	GRAM					
1	ACSIOT0701	Wireless Sensor Network	3	0	0	30	20	50		100		150	3
2		Departmental Elective-V	3	0	0	30	20	50		100		150	3
3		Open Elective-II	3	0	0	30	20	50		100		150	3
4		Open Elective-III	3	0	0	30	20	50		100		150	3
5	ACSIOT0751	Wireless Sensor Network Lab	0	0	2				25		25	50	1
6	ACSE0759	Internship Assessment-III	0	0	2				50			50	1
7		MOOCs (For B.Tech. Hons. Degree)											
		GRAND TOTAL										700	14

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VII) B. Tech Students

S. No.	Subject Code	Course Name (IoT)	University / Industry Partner Name	No of HOURS	Credits
1.	AMC0162	Internet of Things: Sensing and Actuation From Devices	University of California San Diego	16 hours	1
2.	AMC0149	Architecting Smart IoT Devices	EIT Digital	33 hours	2.5
		<u>OR</u>			
S. No.	Subject Code	Course Name (Java)	University / Industry Partner Name	No of HOURS	Credits
1	AMC0105	Developing Cloud Apps with Node.js and React	IBM	16	1
2	AMC0167	Java Servlet Pages (JSPs)	LearnQuest	16	1

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after semester-VI and will be assessed during Semester-VII

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

List of Departmental Electives								
Departmenta l Electives	Subject Codes	Subject Name	Bucket Name	Branch	Semester			
Elective-V	ACSE0712	RPA Implementation	CRM-RPA	IoT	7			
Elective-V	ACSAI0712	Natural Language Processing	Data Analytics	IoT	7			
Elective-V	ACSE0713	Web Development using MERN Stack with DevOps	Full Stack Development	IoT	7			
Elective-V	ACSAI0711	IoT for Smart Cities	Smart Systems	IoT	7			

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science And Engineering (Internet Of Things) <u>EVALUATION SCHEME</u> SEMESTER-VIII

SI.	Subject	Subject Name	Periods			Evaluation Scheme			End Semester		Total	Credit	
No.	Codes	, and the second se	L	Т	Р	СТ	ТА	TOTAL	PS	ТЕ	PE	Total Credit 150 2 500 10	
1		Open Elective-IV	2	0	0	30	20	50		100		150	2
2	ACSE0859/ ACSE0858	Capstone Project/Industrial Internship	0	0	20				200		300	500	10
3		MOOCs (For B.Tech. Hons.											
		Degree)											
4		TOTAL										650	12

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VIII) B. Tech Students

S. No.	Subject Code	Course Name (IoT)	Univers	sity / Industry Partner Name	No of HOURS	Credits
1.		Capstone: Autonomous Runway Detection for IoT	E	EIT Digital(1/4)	30 hours	2.5
2.		Internet of things Capstone V2: Build a mobile surveillance system	University	of California San Diego	4 hours	0.5
		<u>OR</u>		- 		
S. No.	Subject Code	Course Name (Java)	Univers	sity / Industry Partner Name	No of HOURS	Credits
1	AMC0184	Developing Applications with SQL, Databases, and Django	,	IBM	14 Hours	1
2	AMC0187	Getting started with Git & Github		IBM	8 Hours	0.5
S.No.	Subject Code	e Course Name		University/Industry Partner Name	No. of Hours	Credit
1	AMC0214	The Complete React Developer Cour	se l	Infosys Springboard	39 hours	3
2	AMC0215	AWS IoT Case Study- Smart Parking Proj	iect l	Infosys Springboard	6 hours	0.5
3	AMC0216	Programming using Java		Infosys Springboard	113 hours	4
4	AMC0215	Programming Fundamentals using Python - Part 1		Infosys Springboard	43 hours	3.5
5	AMC0216	Industrial IoT Markets and Security		Infosys Springboard	21 hours	1.5
6	AMC0217	React Native		Infosys Springboard	19 hours	1.5

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science And Engineering (Internet Of Things)

AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

$\boldsymbol{\mathcal{C}}$		
1.	For 6 to 12 HOURS	=0.5 Credit
2.	For 13 to18	=1 Credit
3.	For 19 to 24	=1.5 Credit
4.	For 25 to 30	=2 Credit
5.	For 31 to 35	=2.5 Credit
6.	For 36 to 41	=3 Credit
7.	For 42 to 47	=3.5 Credit
8.	For 48 and above	=4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only. The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits.

	B. TECH FOURTH YEAR		[
Course Code	ACSIOT0701	LTP	Credits		
Course Title	WIRELESS SENSORS NETWORK	300	3		
Course Objec	tive: Students should learn the Fundamentals of wireless communic	cation technology	and wireless		
sensor networks al	so students should be able to design sensing node with wireless sensor r	etworks for IoT a	pplication.		
Pre-requisites:	Computer Networks, IoT Protocols				
	Course Contents / Syllabus				
UNIT-I	WIRELESS COMMUNICATION AND WSN		8 HOURS		
Wireless Commu	nication: Fundamentals of wireless communication technology, t	he electromagnet	tic spectrum		
radio propagation	, characteristics of wireless channels, Wireless Internet				
Introduction to w	ireless sensor networks: Key definitions of sensor networks, Ch	aracteristics, adv	antages and		
challenges of wir	eless sensor network				
UNIT-II	WIRELESS SENSOR NODE DESIGN		8 HOURS		
Wireless Sensor	node architecture: Wireless Single-Node Architecture Hardware	Components, co	ommercially		
available sensor	nodes - IRIS, Mica Mote, EYES nodes, BT nodes, Energy Cor	sumption of Ser	nsor Nodes,		
Operating System	ns, Network Architecture, Sensor Network Scenarios, Optimizatio	on Goals			
UNIT-III	MAC AND ROUTING PROTOCOLS		8 HOURS		
MAC Protocols:	IEEE 802.15.4 MAC protocol, MAC protocols for sensor n	etwork, location	n discovery,		
SMAC, BMAC,	Traffic-adaptive medium access protocol (TRAMA), Issues in d	esigning MAC p	rotocols for		
wireless networks	5				
Routing Protocol	s: classification of routing protocols, table-driven, on-demand,	hybrid and flood	ling routing		
protocols, Issues	in designing a routing protocol.				
UNIT-IV	INFRASTRUCTURE AND SECURITY		8 HOURS		
Infrastructure E	stablishment: Topology Control, Clustering, Time Synchro	nization, Local	ization and		
Positioning, Sensor Tasking and Control Platform, Tool and Security: Programming Challenges, Node-level					
software platform	ns, Node-level Simulators. Security issues in Sensor Networks. Fu	ture Research D	irection.		
UNIT-V	APPLICATIONS OF WSN		8 HOURS		

Applications of WSN: Home Control, Industrial Automation, Medical Applications, Reconfigurable Sensor Networks, Civil and Environmental Engineering Applications.

Case Study: IEEE 802.15.4 LR-WPANs Standard, IEEE 802.11ax, Target detection and tracking, Field sampling.

Course Outcomes: After completion of this course students will be able to

CO 1	Understand concept of wireless communication and challenges in wireless sensor networks	K2
CO 2	Interpret sensor node architecture, design issues and optimization goals.	K3
CO 3	Implement MAC and different routing protocol based on Wireless sensor network	K3
CO 4	Discuss Infrastructure and security issues in wireless node sensor networks	K2
CO 5	Design Wireless sensor network for different applications	K6

Text books

- 1. Kazem Sohraby, Daniel Minoli and Taieb Znati, "Wireless Sensor Networks Technology, Protocols, and Applications", John Wiley & Sons, 2007.
- 2. Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks," John Wiley & Sons, Ltd, 2005.
- 3. Thomas L. Marzetta, Erik G. Larsson, Hong Yang, Hien Quoc Ngo, Fundamentals of Massive MIMO, Cambridge University Press

Reference Books

I ACICI CIICC DOOL	
1. C. Siva	Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education - 2008.
2. William	Stallings, "Wireless Communications and Networks ", Pearson Education - 2004.
Video Links	
Unit 1	https://www.youtube.com/watch?v=W1aMmCZ25fw
Unit 2	https://www.youtube.com/watch?
	v=ycaz99NogS4&list=PLJ5C_6qdAvBHroAfekCO7K4xphEF74UPc
Unit 3	https://www.youtube.com/watch?
	v=sayPu0biqQk&list=PLhjFbo2uE8q2FiaqRw4RO2MqNaJY4pi9O
Unit 4	https://www.youtube.com/watch?
	v=N03Gh6GvEw4&list=PLV8vIYTIdSnaoFjclogMhXiBFrHSL2Ar1
Unit 5	https://youtu.be/vnLvup1q3pk

		B. TECH. FOURTH YEAR		
Course C	ode	ACSIOT0751	LTP	Credit
Course Ti	itleWireless Sensor Network Lab002			
List of Ex	peri	ments:		
Sr. No.		Name of Experiment		CO
1	Crea	ate a sample wireless topology using MATLAB Simulation Tool.		CO1
2	-	lement a Transmission Control Protocol and its variants using MATI ulation Tool.	LAB	CO1
3	Imp	lement a User Datagram Protocol using MATLAB Simulation Tool.		CO1
4	-	lement a Power Efficient Gathering in Sensor Information System us TLAB Simulation Tool.	sing	CO1
5		rface DHT Sensors with NodeMCU and publish the sensing informa ld using MQTT.	tion on	CO2
6		nmunicate between two raspberry-pi nodes using MQTT protocol. Pu n one node and subscribe the data on second node.	ıblish	CO2
7		ate WSN network with three raspberry-pi nodes and interface the sen rmation among those. Use AMQP protocol for data exchange.	ISOTS	CO2
8	a bu floo sour sens valu	e source nodes sensing temperature values are deployed in the ground hilding and these nodes send the values to a sink node deployed in the or of the building. A hierarchichal network having 2 cluster nodes and rece nodes under each cluster is implemented in the first floor of a built sing light intensities. The sink nodes of both networks average the rec uses and send it to a gateway node located in the second floor. write a implementing this scenario	e same l three lding for ceived	CO2
Lab Cours	e Out	tcome: After successful completion of this Lab students will be able	to	
CO 1		eate different topologies of Wireless networks and implement protoco ATLAB Simulation tool.	ols using	K6
CO 2		sign Wireless sensor network using Raspberry-pi, sensors and messa	ging	K6

Course code	ACSE0712 LTP	Cred
Course title	RPA IMPLEMENTATION3 0 0	3
	e: This course is designed to give a thorough understanding and practical skills i offware robots for Robotic Process Automation (RPA).	n develo
Pre-requisites:	Basic Knowledge of C Programming	
	Course Contents / Syllabus	
UNIT-I	DATA MANIPULATION	8 HO
Introduction, Ba Scraping, Scrapi UNIT-II	Gathering and Assembling Data Recording and Advanced UI Interaction usic and Desktop Recording, Web Recording, Input/output Methods, Screen Sc ng advanced techniques. SELECTORS	eraping,
RPA Challenge, Image-based aut	ing and Assessing Selectors, Customization, Debugging, Dynamic Selectors, Part Image, Text & Advanced Citrix Automation, Introduction to Image & Text tomation, Keyboard based automation, Information Retrieval, Advanced Citrix Practices using tab for Images Starting Apps. DATA TABLES AND AUTOMATION	Automa
	les & PDF, Data Tables in RPA, Excel and Data Table Basics Data Manipulati	
Extracting Data	from PDF, extracting a single piece of data, Anchors, Using anchors in PDF.	
UNIT-IV	DEBUGGING AND EXCEPTION HANDLING	8 HO
Orchestrator: Te	s, Strategies for solving issues, Catching errors. nants, Authentication, Users, Roles, Robots, Environments, Queues & Transaction	
UNIT-V	ROBOTIC FRAMEWORK	8 HO
	template, Re-Framework template works, Use Re-Framework to automate Classes and Objects.	e your
Course outcome	e: After completion of this course students will be able to:	
	Apply basic concepts and methods from design engineering to explore creative	e K.
CO 1	solutions of real-world problems.	
CO 1 CO 2		K
	solutions of real-world problems.	K.

CO 5	Develop a real-world workflow automation project and will be able to debug a	K
	workflow.	
Textbooks	:	
1) Vaib	nav Jain, "Crisper Learning: For UiPath", Latest Edition, Independently Published, 2018	3.
2) Alok	Mani Tripathi, "Learning Robotics Process Automation", Latest Edition, Packt Pub	lishing
Birm	ingham. March 2018	
Reference	Books/E-Books:	
1) V alla	With a manage "The Single Luglementation Child to Dehotic Decose Automation	(DD

- 1) Kelly Wibbenmeyer, "The Simple Implementation Guide to Robotic Process Automation (RP. Latest Edition, iUniverse Press.
- 2) https://www.uipath.com/hubfs/ebook-its-time-to-automate.pdf

Links:

https://www.youtube.com/watch?v=6QoCG6YIPVo&list=PL41Y-9S9wmyJarNN2KnB4XudpT1yE1kVd

https://www.youtube.com/watch?v=YOHFgrOvPTM&list=PL41Y-9S9wmyLvF6Ou0oPhg6MrFWSw7sn4

https://www.youtube.com/watch?v=QMBuyLMjOhM&list=PL41Y-9S9wmyIYX6kciM8DboVYymsv2y6

https://www.youtube.com/watch?v=KE9raKNTkfI&list=PL41Y-9S9wmyLeXL1DY9j-XepNb_vg9N8t

https://www.youtube.com/watch?v=2rjr8QhD9oc&list=PL41Y-9S9wmyJi2zmWY77yPZrdVI7ab3Ja

Course code	ACSAI0712	LT P	Credits
Course title	NATURAL LANGUAGE PROCESSING	3 0 0	3
	e: The course aims to provide an understanding of the found us is on providing application-based knowledge.	lational concepts	and techniqu
Pre-requisites: Learning.	Programming Skills, Data Structures, Algorithms, Pro	obability and Sta	atistics, Mac
	Course Contents / Syllabus		
UNIT-I	OVERVIEW OF NATURAL LANGUAGE PROCESS	SING	8 HOU
characters, norma	REGULAR EXPRESSIONS ng: Using Python - Convert to lower case, handle email-id, lalization of data (contractions, standardize) etc. pora, and linguistic resources, Linguistic foundations: Mo	-	
• • •		orphology, synta	x, semantics
	guage models: Unigram, Bigram, N-grams.	orphology, synta:	
UNIT-III	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY		8 HOU
UNIT-III Text Vectorizatio	guage models: Unigram, Bigram, N-grams.	esence, Term Free	8 HOU quency, TF-II
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS	esence, Term Free ings: Word2Vec,	8 HOU quency, TF-IE , GloVe. 8 HOU
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated	esence, Term Free ings: Word2Vec, ation- Sentiment	8 HOU quency, TF-IE , GloVe. 8 HOU Analysis, To xt summariza
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated ADVANCED NLP TECHNIQUES	esence, Term Free ings: Word2Vec, ation- Sentiment	8 HOU quency, TF-IE , GloVe. 8 HOU Analysis, To xt summariza 8 HOU
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V Sequential data,	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated	sence, Term Free ings: Word2Vec, ation- Sentiment Il approaches, Te	8 HOU quency, TF-II , GloVe. 8 HOU Analysis, To xt summariza 8 HOU sm, Transform
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V Sequential data, Transformer-base	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Attraction	sence, Term Free ings: Word2Vec, ation- Sentiment Il approaches, Te	8 HOU quency, TF-II , GloVe. 8 HOU Analysis, To xt summariza 8 HOU sm, Transform
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V Sequential data, Transformer-base	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre cy: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Atted ed models: BERT, GPT, T5, Introduction to Hugging Face T	esence, Term Free ings: Word2Vec, ation- Sentiment Il approaches, Ter tention Mechanis Fransformers, Cas	8 HOU quency, TF-II , GloVe. 8 HOU Analysis, To xt summariza 8 HOU sm, Transform se studies.
UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V Sequential data, Transformer-base Course outcome	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Pre ty: Cosine similarity, Word Mover's distance, Word embedd TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classificated applications: Machine translation: Rule-based and statisticated conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Atteed models: BERT, GPT, T5, Introduction to Hugging Face T e: After completion of this course students will be able to: Appreciate the emerging trends and challenges in NLP an	esence, Term Free ings: Word2Vec, ation- Sentiment al approaches, Te tention Mechanis Fransformers, Cas	8 HOU quency, TF-IE , GloVe. 8 HOU Analysis, To xt summarizat 8 HOU sm, Transform se studies.

CO4	Implement NLP techniques to design real-world NLP applications	K3
CO 5	Apply advanced techniques like sequential modelling and attention	K4
	mechanism to develop NLP applications	

Textbooks:

1)Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Second Edition, Pearson Educati 2009 ISBN 0131873210.

2)James Allen, Natural Language Understanding, 2nd edition, 1995 Pearson Education ISBN 9780805303346.

3)Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, NLP: A Paninian Perspective,1st edition1995, Prem ISSBN 9788120309210

Reference Books:

1)Christopher D.Manning and Hinrich Schutze,, "Foundations of Statistical Natural Language Processing MIT Press, 1999 Second Edition, ISBN No. 0-262-13360-1.

2)T. Winograd, Language as a Cognitive Process, 1st edition, 1983 Addison- Wesley ISBN 020108-571-2
3)L.M. Ivansca, S. C. Shapiro, Natural Language Processing and Knowledge Representation, 2nd editi 2000 AAAI Press ISBN-13: 978-0262590211

Links:

- 1) https://realpython.com/nltk-nlp-python/
- 2) https://www.coursera.org/lecture/python-text-mining/basic-nlp-tasks-with-nltk-KD8uN
- 3) https://www.coursera.org/lecture/nlp-sequence-models/learning-word-embeddings-APM5s
- 4) https://www.coursera.org/projects/regular-expressions-in-python
- 5) https://www.coursera.org/learn/python-text-mining/lecture/sVe8B/regular-expressions

	B.TECH FOURTHYEA	R	
Subjec	et Code: ACSE0713	LT P 3 0 0	
Subjec Stack	et Name:Web Development using MERN	Credits 3	
~	with DevOps	_	
dynamic them tog	Objective: This course focuses on how to design and c web pages and interactive web applications. Studen gether to create a MERN stack application.	ts can understand ho	
Pre- rec	quisites: Student should have the knowledge of HTM	-	
	Course Contents/Syllabu	S	
Unit-1	Introduction to React JS: Overview of frameworks, NPM commands, React App, T Structure, React Component Basic, Understanding JSX, Stateless and Stateful Components, Component life cycle router vs react-router-dom,	Props and State,	8 Hours
Unit-2	Connecting React with mongodB: Google Material UI, AppBar, Material UI's Toolbar, Nav Buttons, SQL and Complex Transactions, Dynamic Sche get Indexes () & drop Index (), Replication, Statement-ba Replication, Auto-Sharding and Integrated Caching, Load balancing, scalability.	ema, create Index (), ased vs. Binary	8 Hours
Unit-3	Node js & Express Framework: Introduction, Environment Setup, serving static resource with vash and jade, Connecting Node.js to Database, Mc Creating Rest APIs, Express Framework, MVC Pattern, and Sessions, HTTP Interaction, User Authentication	ongoose Module,	8 Hours
Unit-4	Evolution of DevOps: DevOps Principles, DevOps Lifecycle, DevOps Tools, an DevOps, SDLC (Software Development Life Cycle) models, L Methodology, Agile vs DevOps, Process flow of Sc Project planning, scrum testing, sprint Planning and F Continuous Integration and Delivery pipeline.	ean, ITIL and Agile rum Methodologies,	8 Hours
Unit-5	CI/CD concepts (GitHub, Jenkins, Sonar): GitHub, Introduction to Git, Version control system, Jenk Creating Job in Jenkins, adding plugin in Jenkins, Creati & Git, Integration of Sonar, Dockers, Containers Image: containers, Container lifecycle, Introduction to Kubernet	ng Job with Maven Run, pull, push	8 Hours
Course	e Outcomes –		
CO1	Apply the knowledge of ES6 that are vital to implement over the web.	t react application	K3
CO2	Implement and understand the impact of web designing connectivity with Mongodb .	by database	К3
CO3	Explain, analyze and apply the role of server-side script Nodejs and Express js framework	ting language like	K4
CO4	Identify the benefits of DevOps over other software dev	velopment processes	K2

	to Gain insights into the DevOps environment.	
	Demonstrate popular open-source tools with features and associated	K3
CO5	terminology used to perform Continuous Integration and Continuous	IX.J
	Delivery.	
Textb	ooks:	
1.	Kirupa Chinnathambi, "Learning React", 2nd Edition 2016, Addison Wesl	ey
	Publication.	
2.	Mohan Mehul, "Advanced Web Development with React", 2 nd Edition 2	020, BPB
	Publications.	
3.	Dhruti Shah, "Comprehensive guide to learn Node.js", 1st Edition, 2018	BPB
	Publications.	
4.	Jennifer Davis, Ryn Daniels, "Effective DevOps: Building, Collaboration and Tooling at Scale",1 st Edition, 2016, O'Reilly Media Publication.	, Affinity,
5.	John Edward Cooper Berg, "DevOps. Building CI/CD Pipelines with	th Jenkins
	Docker Container, AWS (Amazon Web Services) ECS, JDK 11, Git and	d Maven 3
	Sonar, Nexus", Kindle Edition, 2019, O'Reilly Media Edition.	
Refer	ence Books:	
	Anthony Accomazzo, Ari Lerner, and Nate Murray, "Fullstack React: The	e Complete
	Guide to ReactJS and Friends", 4th edition, 2020 International Publishing	1
2.	David Cho, "Full-Stack React, Type Script, and Node: Build cloud-ready	web
	applications using React 17 with Hooks and GraphQL", 2nd edition, 201	7 Packt
	Publishing Limited.	
3.	Richard Haltman & Shubham Vernekar, "Complete node.js: The fast guid	le: Learn
	complete backend development with node.js"5th edition, 2017 SMV pub	lication.
4.	Glenn Geenen, Sandro Pasquali, Kevin Faaborg, "Mastering Node.js: Bu	ild robust
	and scalable real-time server-side web applications efficiently" 2nd edition	on
	Packt,2017 Publishing Limited.	
5.	Greg Lim," Beginning Node.js, Express & MongoDB Development, kind	ile
	edition,2019 international publishing.	
6.	Daniel Perkins, "ReactJS Master React.js with simple steps, guide and	
	instructions" 3rd edition, 2015 SMV publication.	
7.	Peter Membrey, David Hows, Eelco Plugge, "MongoDB Basics", 2nd ed	ition ,2018
	International Publication.	,
Links	: NPTEL/You Tube/Web Link:	
https://v	voutu.be/QFaFIcGhPoM?list=PLC3y8-rFHvwgg3vaYJgHGnModB54rxOk3	
	/outu.be/pKd0Rpw7O48	
https://v	<u>voutu.be/TlB_eWDSMt4</u>	
https://v	<u>voutu.be/QFaFIcGhPoM</u>	
https://y	<u>/outu.be/Kvb0cHWFkdc</u>	
	<u>voutu.be/pQcV5CMara8</u>	
	/outu.be/c3Hz1qUUIyQ	
· · ·	<u>voutu.be/Mfp94RjugWQ</u>	
	<u>voutu.be/SyEQLbbSTWg</u>	
·	<u>voutu.be/BL132FvcdVM</u>	
	<u>voutu.be/fCACk9ziarQ</u>	
	/outu.be/YSyFSnisip0	
	route be/7H OH0ninNs	
https://	<u>/outu.be/7H_QH9nipNs</u> /outu.be/AX1AP83CuK4	

https://youtu.be/hQcFE0RD0cQ	
https://youtu.be/UV16BbPcMQk	
https://youtu.be/fqMOX6JJhGo	
https://youtu.be/m0a2CzgLNsc	
https://youtu.be/1ji 9scA2C4	
https://youtu.be/tuIZok81iLk	
https://youtu.be/IluhOk86prA	
https://youtu.be/13FpCxCClLY	

	B. TECH FOURTH YEAR		
Course Code	ACSAI0711	L T P	Credits
Course Title	IoT for Smart Cities	300	3
Course Objecti	ve: Students should understand Fundamentals of Smart cities and	its urban plannin	ig structure and
	architect process of smart cities using IoT application. Stude		
changes in sustaina	ble growth of smart cities.		
Pre-requisites: Co	omputer Networks, IoT Protocols		
	Course Contents / Syllabus		_
UNIT-I	Introduction to Smart Cities		8 HOURS
0,	Smart Hospital Management System, Smart Automations, S DE sensor and actuators used in the Development of smart c es	,	U .
UNIT-II	Technology and Infrastructure used for Smart Cit	ies	8 HOURS
Surveillance Came	Security in Smart Cites gent Materials, Smart Meter Deployment, Automated door lock ras, RFID security systems, Library books anti-theft systems	, Fog computin	•
Data Encryption St	andard (DES) Techniques and its types, Blockchain for Decentr	alized Security,	
UNIT-IV	Understanding Sustainability and Urban Mobility		10 HOURS
SCENE), Smart Ag Smart Waste Mana	, Green IoT, Visible light communication, WPT and Energy priculture, Reduction of CO2, Smart Chemical Technology, Energy gement, Waste generation geo-specific data analysis, Smart bin ement, Smart irrigation, Rain and storm water management	rgy Consumptio	on Monitoring
8			
UNIT-V	Smart Cities Case Studies		6 HOURS
UNIT-V International Case Sensing technologi India's Ecosystem		nentation and ch	technologies

CO 1	Understand the structure, issues and challenges in designing smart cities	K2
CO 2	Communicate and visualize IoT data with communication techniques and Hologram	K2
CO 3	Implement the concept of automated doors and security systems for different IoT applications	K3
CO 4	Analyze the concept of sustainable green energy and architect smart waste and water management like systems	K4
CO 5	Implement smart city use cases with respect to Indian smart city plans	K3
Text books		
4. Intro	duction To Smart Cities 1St Ediion 2019 Edition by ANIL KUMAR, PEARSON	
5. Sma	rt Cities by Claude ROCHET, Wiley-ISTE 2018	
Reference B	ooks	
3. Sma	rt City on Future Life - Scientific Planning and Construction by Xianyi Li 2012	
4. Sma	rt Cities: Big Data, Civic Hackers, and the Quest for a New Utopia by Anthony Townsend 2013	
	hart city case study of Singapore—Is Singapore truly smart? - ScienceDirect	
6. (PD)	F) Case study of Dubai as a Smart City (researchgate.net)	
	n-Source Web Repositories	
Reco	rt city government of India. <u>http://smartcities.gov.in</u> onceptualising Smart Cities: A Reference Framework for ://www.niti.gov.in/writereaddata/files/document_publication/CSTEP%20Report%20Smart%2 Framework.pdf	India 0Cities
Draf mart	t Concept Note on Smart City Scheme". Government of India - Ministry of Urban Dev citiesoftomorrow.com/wp-content/uploads/2014/09/CONCEPT_NOTE_ 2014REVISED_AND_LATESTpdf	elopment ·

Unit I	Nokia Technology Vision 2030 - YouTube
Unit 2	What is Zigbee and How it Works Zigbee Network Explained - YouTube
Unit 3	How to Make Remote Control Door Lock at Home - YouTube
Unit 4	IoT - Smart Green Building - YouTube
Unit 5	Smart waste management using IOT - real benefits of Sensoneo - YouTube